Goodslides: Custom theme
Michael W. Kearney
School of Journalism
Informatics Institute
University of Missouri
Michael W. Kearney
School of Journalism
Informatics Institute
University of Missouri
## load rtweet dplyr and ggplot2
library(rtweet)
library(dplyr)
library(ggplot2)
## stream
rt <- stream_tweets(timeout = 30, verbose = FALSE)
## group by english and non-english
rt$eng <- ifelse(
rt$lang == "en" & !is.na(rt$lang), "English", "Non-English"
)
rt <- group_by(rt, eng)
ts_data
and trimts
are useful rtweet functionsts_data(rt, "5 secs") %>%
trimts(1, 1) %>%
ggplot(aes(x = time, y = n)) +
geom_smooth(method = "loess", aes(group = eng), colour = "#aa00cc", alpha = .3) +
geom_point(aes(fill = eng), shape = 21, size = 3.5, alpha = .7) +
labs(title = "Filtering Twitter's stream API using stop words",
subtitle = "Tweets collected and aggregated in 10 second
intervals in R using rtweet") +
ggthemes::theme_fivethirtyeight(base_size = 18) +
theme(legend.title = element_blank()) +
scale_color_manual(values = c("#5577fa", "#df6666")) +
scale_fill_manual(values = c("#5577fa", "#df6666"))
foo <- function(n) {
data.frame(
var1 = rnorm(n),
var2 = rnorm(n)
)
}
df <- foo(10)
print(df)
## var1 var2
## 1 -0.324496769 -0.26676898
## 2 -0.514488441 0.33214702
## 3 0.647522776 0.19569984
## 4 0.345774165 -0.97835044
## 5 0.666491212 -0.50410010
## 6 0.567890358 -0.19832418
## 7 0.079419159 -0.25285570
## 8 -0.984807787 1.40425936
## 9 0.009933486 -1.00330272
## 10 -1.149808591 0.01485205
Exposure to diversity higher than ever