goodslides: Mizzou theme

Michael W. Kearney
School of Journalism
Informatics Institute
University of Missouri

rtweet pkg

## load rtweet dplyr and ggplot2
library(rtweet)
library(dplyr)
library(ggplot2)
## stream
rt <- stream_tweets(timeout = 30, verbose = FALSE)
## group by english and non-english
rt$eng <- ifelse(
    rt$lang == "en" & !is.na(rt$lang), "English", "Non-English"
  )
rt <- group_by(rt, eng)

Plot time series of tweets

ts_data(rt, "5 secs") %>%
  trimts(1, 1) %>%
  ggplot(aes(x = time, y = n)) +
  geom_smooth(method = "loess", aes(group = eng), colour = "#aa00cc", alpha = .3) +
  geom_point(aes(fill = eng), shape = 21, size = 3.5, alpha = .7) +
  labs(title = "Filtering Twitter's stream API using stop words",
       subtitle = "Tweets collected and aggregated in 10 second
       intervals in R using rtweet") +
  ggthemes::theme_fivethirtyeight(base_size = 18) +
  theme(legend.title = element_blank()) +
  scale_color_manual(values = c("#5577fa", "#df6666")) +
  scale_fill_manual(values = c("#5577fa", "#df6666"))

R code example

foo <- function(n) {
  data.frame(
    var1 = rnorm(n),
    var2 = rnorm(n)
  )
}
df <- foo(10)
print(df)
##          var1       var2
## 1   0.3094458 -1.8049045
## 2  -0.2419304  1.5845365
## 3   0.3152654  0.4575290
## 4   0.1839490  1.2531591
## 5   0.8986711 -1.2675510
## 6  -2.1633067  0.1185645
## 7   1.5178643  2.5652821
## 8  -1.2173586 -0.2077794
## 9   0.2285043  0.1167743
## 10 -0.8806099 -0.4850999

 

And now some content

Content

Exposure to diversity higher than ever

 

That's all!