class: center, middle, inverse, title-slide # A Network-Based Approach to Estimating Political Partisanship ### Michael W. Kearney📊
School of Journalism
Informatics Institute
University of Missouri ###
@kearneymw
@mkearney
--- class: center, middle Slides available online: [mkearney.github.io/ica18_estimating](https://mkearney.github.io/dsa_execweek_talk/) Please feel welcome to share on social media: [\#ica18](https://twitter.com/hashtag/ica18?f=tweets&vertical=default&src=hash) [\#ica_pol](https://twitter.com/hashtag/ica_pol?f=tweets&vertical=default&src=hash) --- background-size: 150px auto background-position: 490px 185px, 567px 320px, 644px 185px, 721px 320px, 644px 455px, 567px 50px background-image: url(img/chr-logo.png), url(img/hexagon-logo.png), url(img/textfeatures-logo.png), url(img/tfse-logo.png), url(img/botrnot-logo.png), url(img/rtweet-logo.svg) # About Me **Background** - PhD in COMS from Kansas - Asst prof at Mizzou **Research interests** - Partisan selective exposure - Digital and social media **\#rstats packages** - Twitter APIs: [**{rtweet}**](https://cran.r-project.org/package=rtweet) - Text analysis: [**{textfeatures}**](https://cran.r-project.org/package=textfeatures) [**{chr}**](https://github.com/mkearney/chr/) - Data wrangling/viz: [**{hexagon}**](https://github.com/mkearney/hexagon/) [**{tfse}**](https://github.com/mkearney/tfse/) - Machine learning: [**{botrnot}**](https://github.com/mkearney/botrnot/) --- # Partisanship **Partisanship**: *extent to which one affiliates or associates with a political party* <site>(Kenski, 1980)</site> + Differs from political ideology because it describes relationship to political **organizations** and not **ideas** + Partisanship is therefore inherently **network-centric** **Polarization**: *extent to which competing partisans diverge* + Mass polarization due to non-partisans, or moderates, are *"tuning out"* of politics by selecting more entertainment media options <site> (Layman & Carsey, 2002; Levendusky, 2013) </site> <style> site { color: #0051BA; opacity: .75; font-size: .9em !important; } </style> --- # Twitter Twitter **conversation networks** of political topics occurred largely within partisan clusters <site> (Himelboim, 2014) </site> **Follow-decisions**, or whether a user decides to follows elites, used to estimate the political ideology of [political] elite and mass public users <site> (Barbera, 2015) </site> + Bayesian ideal point estimation + Using snapshot of user networks, relatively small pool of elite accounts, and single [political] dimension **How can we translate this method of estimating partisanship (a) in terms more familiar to communication scholars and (b) across multiple dimensions?** --- class: inverse, center, middle # Method --- # Population Followers (`N = 18,312,863`) of twelve well-known **source accounts** <site> (e.g., Arceneaux et al., 2012, 2013; Holbert et al., 2012; Wicks et al., 2014) </site> ``` r ## GET data via followers/list API rtweet::get_followers(screen_name, n = 5e6) ``` **Democrat** + @maddow, @paulkrugman, @Salon, @HuffPostPol **GOP** + @seanhannit, @Sarah_Palin_USA, @DRUDGE_REPORT, @foxnewspolitics **Moderate** + @SInow, @AMC_TV, @survivorcbs, @AmericanIdol --- # Sampling <span>1.</span> Retrieved **users-level data for randomly selected users (N = 60,000)** ``` r ## GET data via users/lookup API rtweet::lookup_users(users) ``` <span>2.</span> Applied **filters** informed by first-hand experience and previous research <site> (Barberá, 2015; Haustein et al., 2016; Yardi et al., 2009) </site> + `protected | verified` + `friends < 50 | friends > 1500` + `followers < 50 | followers > 1500` + `statuses < 200 | (statuses / ten_days) < 1.0` <span>3.</span> Randomly sampled 1,000 users from each group --- # Elite accounts <span>4.<span> Collected friend **networks** of all 3,000 users ``` r ## GET data via friends/list API rtweet::get_friends(user) ``` <span>5.</span> Using friend networks, identified **elites** (N = 28,855) if they... + were followed by users sampled from at least two different source accounts + had at least 400 followers + maintained unprotected, or public, Twitter accounts --- # PCA + Three component solution supported by parallel analysis (and Kaiser criteria) and principal component analysis consistent with theorized model, `χ2(25) = 9,108.82`, `p < .001`, `RMSR = 0.054` <p align="center"><img width="80%" src="img/spatial.png" /></p> --- # Validity check Compare to PEW estimates <p align="center"><img width="80%" src="img/pew.png" /></p> --- class: inverse, center, middle # Results --- # Republican elites <p align="center"><img class="asdf" width="116%" src="img/right.png" /></p> --- # Democrat elites <p align="center"><img class="asdf" width="116%" src="img/left.png" /></p> --- # Least partisan <p align="center"><img class="asdf" width="116%" src="img/nonpartisan.png" /></p> --- # Most partisan <p align="center"><img class="asdf" width="116%" src="img/partisan.png" /></p> --- class: inverse, center, middle # Takeaway --- # Closing thoughts **Proposed workflow** 1. Sample followers from partisan and non-partisan groups 1. Identify elite accounts from friend networks of sampled users 1. Estimate partisanship using rotated factor scores from PCA/EFA **Limitations/future directions** 1. Rate/time limits and collecting followers 1. Consistent versus disciminant follow decisions 1. Leverage machine learning precision --- class: inverse, center, middle # That's it \o/ <style> img.asdf { max-width: 116%; margin-left: -8%; } </style>